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ABSTRACT

We consider three models (elliptic, flat and hyperbolic) of Gaussian
random analytic functions distinguished by invariance of their zeroes
distribution. Asymptotic normality is proven for smooth functionals
(linear statistics) of the set of zeroes.

In troduction and the main result

Zeroes of random polynomials and other analytic functions w erestudied by
mathematicians and physicists under various assumptions on random coeffi-
cients. One class of models introduced not long ago by Bogomolny, Bohigas and
Leboeuf [5, 6], Kostlan [16], and Shub and Smale [23] has a remarkably unique

unitary invariance:

“...indeed it has no true freedom at all. It is (statistically) unique
in the same sense as ‘the P oissonprocess’, or ‘the thermal (black
body) electromagnetic field’ are unique. ..”

Hannay [13, p. L755]

Following Hannay [12], we use the term ‘chaotic analytic zero points’ (CAZP,
for short). We consider here three CAZP models: the elliptic CAZP, the flat
CAZP, and the hyperbolic CAZP called by Leboeuf [17, p. 654] SU(2), W, and
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SU(1,1) in accordance with the symmetry group of the model. These models
may be described analytically or geometrically. The analytical description is
short and elementary: CAZP is the (random) set of zeroes of such a (random)
analytic function ¥,

L k+1)
(0.1) (=) \/ D 5 (elliptic, L=1.2,..),
- L k—1) 4
Z \/ + )zl” (hyperbolic, L > 0),
k=
where (o, (1, . . . are independent standard complex Gaussian (random) variables;

that is, the distribution ANc(0,1) of each ¢ has the density mlexp(—|z|?) with
respect to the Lebesgue measure m on C, dm(z) = (dRez)(dImz). For the
elliptic CAZP one could assume equivalently that ((g,...,{r) is uniformly dis-
tributed on the sphere |(o|? + -+ + |(1|> = const (which changes the function
) without changing its zeroes). The analytic function (0.1) is a polynomial of
degree L, the function (0.2) with probability one is an entire function (indeed,
limsup |¢x]'/* = 1 a.s.), and the function (0.3) with probability one is analytic
in the unit disk.

Why just these coefficients? Because of symmetry of the models revealed by a
geometric description, given in Section 1; readers not bothered by this question
may skip that section.

We introduce unified notations: M for the domain of the random function,
and G for the symmetry group.

M (domain) Irgeiiiiin f G (symmetries)
Elliptic | CU {oc}, that is, S? 1_‘5‘2“2 Z %7 la]> + b =1
Flat C |dz| zraz+b,lal =1
Hyperbolic | D={z€ C:|z]| < 1} % Z gj_'i_“b la]? — b2 =1

A symmetry g € G transforms the random function ¢ into another random
function z — 9(g(z)) whose distribution depends on g. How everfor every
g € G there exists a complex-valued function u, on M, |uy(z)| = 1, such that
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tw o random functions

¥(g(2))
=7 @)l

are identically distributed. Here

(0.4)

and  z > ugy(z)

L [ AFEP)EE (elliptic),
[ = EP)2 = 4 exp(TlzP/2)  (fat),
(1 —|2|>)~£/2  (hyperbolic).

For example, a shift g(z) = 2+b (for the flat case); here u,(z) = exp(iL Im(2b)).
The symmetry ensures that the distribution of the (random) set of zeroes of ¥
is invariant under G. F or details, see Section 1.

In each of the three cases w ehave a parameter L which is assumed to be
large. Increasing L, we increase accordingly the mean number of random zeroes
per unit area of M.

In the flat case, there is another interpretation: introducing L, we just make
a homothety of the plane with coefficient v/L. This makes some computations
simpler.

In the other tw omodels, changing the value of the parameter L, w ecan
change the propertiesof the process. We mention a recent discovery of Peres
and Virdg [21] that in the special case L = 1 of the hyperbolic model, the
point process is a determinantal one [26]. In this case, Peres and Virdg found a
simple expression for n-point correlation functions and explicitly computed the
distribution of random zeroes in discs in D.

Below, the asymptotic normality is stated for smooth functionals of the ran-
dom set of zeroes, namely, for the random variables (often called the linear
statistics of zeroes)

(0.5) Zr(h)y= Y h(z):/MhdnwL

291 (2)=0

where h is a smooth test function, and ny is the counting measure on the set
of zeroes. In the elliptic case, ny, (S?) = L; in the other two cases ny, is infinite
but locally finite. The choice of the test-functions depends on the model: in the
elliptic case h is a real-v aluedC2-function on the Riemann sphere, in the flat
case h is a real-v aluedC2-function with a compact support in the plane, and in
the hyperbolic case h is a C?-function with a compact support in the unit disk.
Multiple zeroes may be ignored, as well as a possible zero at oo in the elliptic
case, since it happens with zero probability.
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EXPECTA TION OF THE LINEAR STA TISTICS. F or the elliptic model, itvariance
itself gives us the expectation of the random variable Z; (h); in the other tw o
cases it defines the expectation up to a numerical coefficient which can be easily
found using the Edelman—Kostlan formula En, = (27)~'Alog |[#)||dm (see [9],
[24]):

1
EZr (h) = L—/ hdm*
™I M
where
dm(z) (flat),
dm*(z) =< (14 |z*)"2dm(z) (elliptic),
(1 —|2[?)72dm(z) (hyperbolic)
is the invarian t measure onM.

FLUCTUATIONS OF THE LINEAR STA TISTICS. These are computed in Section 2.
We get

(0.6) V aZy (h) = %HA*hnizW) +o(L7™Y), L o,

where x is a numerical constant (the same for each of the three cases), and A*
is the invarian t Laplacian onM:
Ah(z) (flat),
A*R(z) =< (14 ]2/*)?AR(z) (elliptic),
(1 —|2?)2Ah(z) (hyperbolic).

This shows a deca yof the fluctuations of the linear statistics.! Note that
in the flat case formula (0.6) was found in a paper by F orresterand Honner
[10], in which they also conjectured the asymptotics in the elliptic case and
checked it n umerically The estimate Var Z;,(h) = O(1), L — oo, was obtained
by Shiffman and Zelditd in [22].

MAIN THEOREM: In each of the three cases, the random variables
L 1 .
A PR
\/EHA h”Lz(m*) T J
converge in distribution toN'(0,1) for L — oc.

The proof of Main Theorem is based on the asymptotic normality theorem
for non-linear functionals of Gaussian processes. Results of this type are known;

1 The situation changes if we allow non-smooth test functions h. In particular, for
the flat model, the variance of the number of random zeroes in a smooth domain
A is asymptotic to /I times the perimeter of A, see [10]. The difference between
these two types of behavior reflects high frequency oscillations of random zeroes
which are not taken in to accourt when the test function is smooth.
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usually, their proofs rely on the classical method of moments combined with the
diagram technique (see Breuer and Major [7], and the references therein). In
Section 2 we shall prove another result in that spirit using a similar strategy. In
Section 3, we deduce Main Theorem from this result and prove the asymptotics
(0.6).

For real random polynomials Py(z) = Ziv:o & ok where &, are indepen-
dent identically distributed (real-valued) random variables such that E¢, = 0,
P(& = 0) = 0, and E|&|?T¢ < oo, Maslova [18], [19] evaluated the variance
of the number of real zeroes of Py, and proved the corresponding version of
asymptotic normality. Her methods are quite different from ours. Probably,
Main Theorem persists for more general models like zeroes of random holomor-
phic sections of high powers of Hermitian line bundles over Kdhler manifolds
extensively studied by Bleher, Shiffman and Zelditch [22, 2, 3].

THREE TOY MODELS FOR THE FLAT CAZP. It is instructive to compare the
flat CAZP with simpler (‘toy’) models of random point processes in the plane,
especially, random perturbations of a lattice. The first toy model: each poirt of
the lattice \/5Z* = {/T(k+1i) : k,l € Z} is deleted at random, independently
of others, with probability 1/2; the remaining points are a random set. The cor-
responding smooth linear statistics Z(Ll)(h) = [h(z/VL)dn"(z) (where n(!) is
the counting measure on the random set) is asymptotically normal with pa-
rameters IEZ(l) (h) = Lx=! [ hdm and V arZEl)(h) =1 [h2(z/VL)dm(z) =

Lrt||h|j3- 2(m)» Which is quite different from (0.6): the v ariance gravs, not de-
cays; and ||h|| appears, not ||Ah||.

The second toy model: points of the lattice /772 move independently, form-
ing the random set {\/m(k + i) + cng, : k.l € Z} where 1, are indepen-
dent standard complex Gaussian random variables, and ¢ € (0,0c) is a pa-
rameter. The corresponding Zf)(h) = [h(z/VL)dn®(z) is asymptotically
normal with parameters EZ(Q) (h) = (1 4+ o0(1))L7~" [ hdm and V aer)(h) =
(c* +0(1))(2m) 1||Vh|3- 2(m) (where V stands for gradient). This time, the vari-
ance does not grow, but still, it does not decay; and ||Vh|| is not ||Ah]].

The third toy model reac hes asymptotic similarity to the flat CAZP, but is
more complicated. Lattice points are initially aggregated into three-point clus-
ters, and each cluster scatters in a special (equiangular and equidistant) way.
Namely, we consider the random set

{V3x(k + 1i) + ce®™ ™3y, 1kl € Zym=0,1,2},

where 7;,; and c¢ are as before. The corresponding Z = [h(z/VL)dn®)(2)
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is asymptotically normal with parameters IEZf) (h) = (1+0(1))L7—" [ hdm and
Var Zf)(h) =1+ o(l))L’13c4(167r)’1HAhHQLz(m). This time, w ecan mimic
(0.6) by choosing ¢ = 2(rk/3)'/4.

We come to a vague idea of two conservation laws for random zeroes: mass
conservation and center-of-mass conservation. Mass is conserved in the second
and third toy modelgen ter-of-mass is conserved in the third toy model only.
Both should be conserved in the flat CAZP, in some sense (to be understood).
An attempt to understand the mass conservation is made in our next work [25].
The center-of-mass conservation remains unexplored.

About the three directions (e>™/3 : m = 0,1,2): four or more directions
may be used equally w ell,but tw odirections are not enough. Indeed, every
quadratic form @Q: C — R satisfies L 3"~ Q(e?™™/") = 1AQ(0) provided
that n > 3; however, Q(1) + Q(—1) is not proportional to AQ(0).

Maybe, the failure of two-point clusters hints at a third conservation law.

ACKNOWLEDGEMENT: We thank Leonid Pastur, Leonid Polterovich and Zeev
Rudnik for useful discussions.

1. Geometrical description of models

By the geometrical description of CAZP we mean something like this:

The CAZP process on a complex 1-dimensional analytic manifold is
the intersection of its isometric embedding into a projective space
with a random hyperplane.

However, w edo not formalize the description; w eonly explain ho wit works
in the three models considered. For related more advanced theories, see the
w orks of Groma [11, Sect. 3.3], Shub and Smale [23], and Bleher, Shiffman and
Zelditch [4].

1.1 THREE HOMOGENEOUS SP A CES. Each model is based on a simply con-
nected homogeneous space M; it may be thought of as a real 2-dimensional
manifold or a complex 1-dimensional analytic manifold.2 The former may be
embedded into a Euclidean space, the latter — into the projective space P(C*)
of 1-dimensional subspaces of C?. The complex plane C is embedded into P(C?)
by z — {(u,uz) : u € C}; in order to cover the whole P(C?), one additional

2 The choice of a complex structure on our real manifold does not introduce
arbitrariness; there exist only tw oinvarian tcomplex structures, conjugate to
each other, both leading to the same CAZP.
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point is needed, oc — {(0,u) : u € C}. The symmetry group G in the real case
is a subgroup of the group of motions of the Euclidean space. In the complex
case, G is a subgroup of the group of projective transformations of P(C?). The
latter is covered by the group SL(2), and w emay take G C SL(2); such an
action need not be effective (since (—1) acts trivially), which is harmless.

ELLipTIC MODEL. The real manifold is the sphere
§? = {(zo, 21, 22) : $3 +$% +oc§ =1} C R3,

the symmetry group being SO(3) (orientation-preserving rotations of R?). The
complex manifold is the whole P(C?), with G = SU(2); or alternatively,
C U {oo} with transformations z — (az + b)/(cz + d), (¢ Z) € SU(2), pre-
serving the spherical metric |dz|/(1+ |z|?). The correspondence (well-known as
the stereographic projection) is z = (x1 + ix2)/(1 — x0). See also [17, Sect. 2]
and [20, Chap. 4].

FLAT MODEL. The real manifold is the plane R? with the group of (orientation-
preserving) motions, that is, shifts and rotations. The complex manifold is the
complex plane C with transformations z + €¢(z +u), preserving the Euclidean
metric |dz|; or alternatively, P(C?) minus a single point, with transformations
preserving the point. The correspondence is just z = x1 + i2s.

HypPERBOLIC MODEL. The real manifold is {(xo, 21, 22) : 70 = \/1 + 2} + 23}
C R3, the upper sheet of a hyperboloid (in other words, a pseudosphere), the
symmetry group being the connected component of SO(2,1) (rotations of R?
that preserv ethe sheet and orien tation). The complex manifold is the disc
D = {2z € C: |z| < 1}, with transformations z + (az + b)/(bz + @), |a|® —
|b|> = 1, preserving the hyperbolic metric |[dz|/(1 — |z|?); or alternatively, the
corresponding part of P(C?), with G = SU(1,1) (isomorphic to SL(2,R)). The
correspondence is z = (x1+ix2)/(1+x0). See also [17, Sect. 2] and [20, Chap. 5].

1.2 ENLARGING SYMMETRY. The symmetry group G acts transitively on M.
It acts also on discrete subsets of M, but not transitively. A G-invarian t random
discrete subset of M is far from being unique in distribution.

The key ingredient of the construction is an embedding ¢ of M into a high-
dimensional projective space P(C"), n € {1,2,...} U{oo}, and use of the high-
dimensional symmetry group U(n) of rotations of C*. Of course, the image
t(M) is not U(n)-invariart. How ever, w use U(n)-invariance for determining
a probability measure dn yperplanes. Choosing atindom la yperplane, w e
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observe its in tersection with:(M). The case n = co does involwe some techni-
calities; we will return to the point later.

The embedding must be (G, U(n))-invariant in the following sense: for ev ery
g € G there exists U € U(n) such that the diagram

(1.1) M—— M

p(Cn) 22k p(er)

is commutative. Surprisingly, such an embedding is unique (up to a rotation)!
Uniqueness of ¢ leads to a model, (statistically) unique in the same sense as the
P oisson process (recall the quote from Hanng in the Introduction).

Now we switch from a heuristic to rigorous style.

Let H be a Hilbert space over C, either finite-dimensional, or infinite-
dimensional and separable. The projective space P(H) is, by definition, the set
of all one-dimensional subspaces of H. Each non-zero vector z € H \ {0} spans
such a subspace P(z) € P(H). A transformation P(U): P(H) — P(H) cor-
responds to every unitary operator U € U(H); namely, P(U)(P(x)) = P(Ux).
Note that P(e**U) = P(U). Two maps ¢,t': M — P(H) are called unitarily
equivalen t, ift’ = P(U) o ¢ for some U € U(H). A map «: M — P(H) is called
holomorphic, if locally (in a neighborhood of an ypoint of M) it is the com-
position of some holomorphic map M — H \ {0} and the canonical projection
H\ {0} - P(H), v — P(x).

The well-known Fubini-Study metric® on P(H),

dist(P(z), P(y)) = arccos o]

Nyl

is U(n)-invariant. Given a one-to-one map 1: M — P(H), w e get a metric on
M,
dist, (2, 2") = dist(s(2), ¢(2"));

assuming smoothness of ¢ and taking z’ infinitesimally close to z we get a tensor
field g, on M, the Riemannian metric induced by . If ¢ and ' are unitarily
equivalent, then they induce the same Riemannian metric (since dist, = dist,).

3 Or rather, the geodesic metric corresponding to the Fubini-Study metric tensor,
up to a coefficient.
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CALABI'S RIGIDITY THEOREM: If tw o holomorphic enbeddings* of a complex
manifold into P(H) induce the same Riemannian metric on M, then they are
unitarily equivalent. ([8, Th. 9], see also [27, Sect. 4].)

If a holomorphic embedding ¢: M — P(H) is (G,U(n))-invariant (recall
(1.1)), then it induces a G-invarian t Riemannian metric ooM. How ever, suc h
a metric is unique up to a coefficient (since G can rotate M around any given
point). It means that the coefficient is the only possible parameter of a holo-
morphic (G, U (n))-invariant embedding 1: M — P(H) (treated up to unitary
equivalence).

Another implication of Calabi’s theorem: if a holomorphic embedding .: M —
P(H) induces a G-invariant R iemannianmetric on M, then ¢ is (G,U(n))-
wnvariant.

By the w ay,(G,U(n))-invarianceleads to a projective representation of G
(that is, a homomorphism from G to the factor group of U(H) by its center),
not necessarily a homomorphism G — U(H).

1.3 RELATION TO THE ANALYTICAL DESCRIPTION. In order to finish the de-
scription, it remains to write down the corresponding embeddings ¢ in each of
the three cases, to check invariance of induced metrics, and to explain the rota-
tion invariant choice of the random hyperplane in the case when the dimension
of H is infinite.

All invarian tmetrics on M are proportional to the one mentioned in the
Introduction. The only freedom left to us is to choose the numerical coefficient
V'L of the invarian t metric onM.

ELLIPTIC CASE. For the sphere S2, the existence of such an embedding de-
pends on the parameter L. Only for L = 1,2,3,... the invariant metric on
S? is embeddable into P(H).° For such L, an embedding S — P(C'*') is
w ell-knavn to physicists as the system of spin-.J coherent states (.J = L/2), see
[12], [20, Sect. 4.3], [27]. Sometimes, mathematicians call the wave function of a
coherent state “the Szegd kernel” (see [3]). T reated up to rotations of C:+1 | the
map is unique. By rigidity, every such embedding uses only a finite-dimensional
subspace of H.

4 ‘Embedding’ means one-to-one. The theorem holds also for immersions, but we
need only embeddings.

5 One can easily get this using the Edelman—Kostlan formula: if L is non-integer,
then we would get a non-integer answer for the a verage n utmer of zeroes of our
random function on S2.
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The embedding S2 — P(CE+!) may be described as the composition §% —
C — CEFL\ {0} — P(CE*!), where S2 — C is the stereographic projection
mentioned in Section 1.1, CL*+1 \ {0} — P(CE+!) is the canonical projection
r+ P(z), and i: C — CE*1\ {0} is given b y

2= (G0

which evidently corresponds to (0.1).
The induced metric is easy to calculate:

L
(i(z),0 \/ H (1+ 22"

=0
K¢ Z z) |1+ zZ'| )L
Iz (Z)HHL( )H VI+ PV + 2

G-invariance of the metric for every L follo ws immediately from itsG-invariance

for L = 1; hovever, for L = 1 the embedding C — P(CF*!), given by z —
{(u,uz) : u € C}, is already familiar to us (recall the beginning of Section 1.1).

dist,(z, 2") = arccos = arccos (

An explicit calculation gives for Az — 0

dist, (z — %Az, z+ %Az)
|Az|? )L/2
(1422 4+ $|Az[2)2 = Re®(2Az)

= arccos (1 —

— arccos Lﬂ = ‘A |
- (1-3 R o(1))) = VI+ W(H o(1)).

FLAT cASE. If the needed embedding 1: C — P(H) exists for L = 1, then for
every L € (0,00) the map z — «(L'/22) fits; we restrict ourselves to L = 1. The
construction of ¢ is w ell-knavn to physicists as the usual system of coherent
states (Schrodinger, von Neumann, Klauder, et al.), see [20, Chapter 1]. Its
explicit form is given (similarly to the elliptic case) by the composition C —
H\ {0} — P(H) where the first map i: C — H \ {0} is given by

2 3

i(z) = (l,z,ﬁ,ﬁ,...> €l’=H,
cf. (0.2).
We have
~ ., S Zk 5/1{ B
(i(2),i(z") = > NN exp(22');
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. _ 1 1, . 1 .
dist, (z,2") = arccosexp(Re(zz') - §|z|2 - E\z'\2> = arccosexp( - 5\2 - z'\2>;
1 .
dist, (2, z + Az) = arccos (1 - §|Az\2(1 + o(l))) = |Az|(1+ o(1)).

HYPERBOLIC CASE. The corresponding system of coherent states is usually
investigated in terms of unitary representations of the group G = SU(1, 1), see
[20, Chap. 5], [17, Sect. 2], which leads to a special treatment of integer values
of L. In our approach, proje ctiverepresentations appear irrespective of unitary
representations, and L runs over (0, 00).

As before, 1(z) = P(i(z)), but now z € D, and : D — (2 is given b y

SN cexn g ez R

cf. (0.3). The corresponding embedding of the hyperbolic plane to P(H) w as
known already to Bieberbach in 1932. We have

(i(2), (")) = i:j (“¥ ’“)\/ M EECE
11— 22| >—L;
N RV e

dist, (z - %Az, z+ %Az)

dist, (2, 2") = arccos (

arccos (1 + |AZ‘2 >7L/2
=ar
(122 — LAz]2)2 — Re?(:Az)
L |Az]? Az
= arccos (1 - EOLW“ + 0(1))) = VI |_ 1+ o(l).

1.4 RANDOM HYPERPLANE IN HILBERT SPACE? In C", the only U(n)-
invarian tdistribution on hyperplanes, the uniform distribution, may be rep-
resented via the normal (to the hyperplane) vector ((i, ..., (,) distributed uni-
formly on the sphere. The normal distribution for ({i,...,¢,) can be used
instead (as well as any spherically invarian t distribution).

In a Hilbert space H = [? there is no rotation-invariant probability measure
on hyperplanes (nor Lebesgue measure in H). Nevertheless, an infinite sequence
of independent normal N¢(0,1) random variables ( can be used. Of course, it
is not a random element of H, since the event 3" (| < oc is of probability 0.
How evwr, for every © = (c1,c2,...) € I? the series Y ¢4 (, converges a.s., and we
may denote its sum by {x,(). The ‘bad’ set of zero probability, on which the
series does not converge, depends on z; the union over all x € H is not a set of
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zero probability & We cannot choose ¢ at random and speak about ‘the function
x— (z,() on H'.

What w ereally need is the function z — (i(z),() for z € M, that is, the
function z +— (z, () for x € i(M) only .The corresponding series converges a.s.
for all these z simultaneously. Thus, ‘the random hyperplane of H’ is ill-defined,
but still, its intersection with 7(M) is well-defined.

It remains to explain unitary invariance of the construction described above.
Random variables (z, ) can be used simultaneously for a countable set of points
x. In particular, for every orthonormal basis (e1,es,...) of H, the sequence of
random variables {ex, () is w ell-defined. Some reflection shows that the joint
distribution of these (e, () does not differ from that of ;. It follows easily
that our construction can start with an arbitrary basis, resulting in the same
distribution of the random function z — (i(z), (). See also [14, Sect. 1.3].

2. Asymptotic normality for non-linear functionals of Gaussian

processes

2.1 THE RESULT. Let T be a measure space endow edwith a finite positive
measure p, 4(7T) = 1. A complex-valued Gaussian process on T' may be defined
as

(2.1) w(w, t) =Y Ce(w) fr(t)
k

where fy: T — C are measurable functions such that

S <o forallteT,

k
and (x = & + iy are independent standard complex Gaussian variables; i.e.
¢y ~ Nc(0,1). The latter means that & and n; are independent centered
Gaussian (real) variables with variance §; then E¢, = 0 and E|¢,|> = 1. We
restrict ourselves to the case

S =1 foralltel.
k
Then w(t) ~ Ne(0,1) for all t € T.
Now, a few w ordsabout the convergence of the series (2.1). T reatingeach
term (i, (w)f(t) as an element of the space £? = L2((Q, P) x (T, ut)), we have

Gk frll 2 = 1<kl 22, Py 1 fkll 22 (7o) = 1Skl z2 (7o)

6 Tn fact, it is the event 3" |¢x|? = oo, of probability 1.
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and the terms are pairwise orthogonal. Therefore, the series (2.1) converges in
the space” L2,

In what follows, we always assume that the sum of the series (2.1) is not the
zero function in the space £2.

The correlation function p: T x T'— C of the process w(t) equals

def

p(s.t) = Efw(s)w®)} = D fuls) fulD).
k

Clearly, [p(s,t)| <1 and p(t,t) = 1.
Consider a sequence of complex Gaussian processes w, with the correlation
functions p,(s,t) and define a sequence of random variables

Z, = /T (wn (1)) O (1) du(t)

where ¢: Ry — R is a measurable function such that

/ <p2(r)e#2/2rdr < oo,
0

and ©: T — R is a measurable bounded function. We shall prove that under
some natural assumptions on the off-diagonal decay of the correlation functions
pn(s,t) when n — oo, the random variables Z,, are asymptotically normal.

2.2 THEOREM: Suppose that for each a € N
Jfz lpn(s, 1) 2 O(s)O(t)dp(s)du(t)

(2.3) lim inf > 0,
n—oo SUPseT fT \Pn(S:tﬂdﬂ(t)
and that
(2.4) lim sup/ lon (s, t)|du(t) = 0.
n—o0 seT JT

Then the distributions of the random variables
Zn—EZ,
VvV arz,

converge weakly to N'(0,1) for n — oco.

If ¢ is an increasing function, then it suffices to assume that condition (2.3)
holds only for a = 1.

7 Moreover, for each t € T, the series (2.1) converges in L*(Q, P) (for an obvi-
ous reason), and by the Kolmogorov—Khinchin theorem [15, Ch. 3] the series
converges in L*(T, ) for almost all w € Q.
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Remarks: (i) The function |p(s, t)|?® which appears in the integrand on the left-
hand side of condition (2.3) is a positive definite function on T x T' (see formula
(2.6) below). Hence, for a € N, the integral [[. [p(s,t)[**©(s)O(t)du(s)dpu(t)
is always non-negative.

(i) The role of condition (2.4) is to guarantee that

lim V aiZ,, = 0.

n—oc

In fact, under assumption (2.3), the sequences
n+— VarZ, and n b—>/ |on (s, t)|du(t)
T

have the same decay (see expression (2.7) below).

2.2 SOME PRELIMINARIES.  We shall deal with the space LZ CL2(C, N (0,1))
and its subspaces P,, which consist of the polynomials in ¢ and ¢ of degrees a
and f respectively, a + 8 = m. The space L% has a polynomial basis

1 .
{¢a—!—/3! Iy }aﬁ%

where : C“Z’B : is the orthogonal projection of the polynomial C"Zﬁ onto the
subspace H'™ def Pm © Pm_1, m = a + 3 [14, Example 3. 32].8 Thus any
square integrable function ® of a random variable ¢ ~ N¢(0,1) is of the form

Caf a7 B 2 2
(I) = : o <I> = o .
© m}ﬁejh a9 =D s

In what follo ws, w e shall dealonly with the radial functions ¢(|¢|). In this

case,
(2:5) el = D = sl
a=0 '

where ca, € R and Y, 3, = ||¢|[>. Indeed, the group of rotations ¢ — e¥¢
acts on the space L% leaving invariant the subspaces H'™. If m is odd, then
H™ contains no radial functions; if m = 2« is even, then the subspace of radial
polynomials in H*™ is one-dimensional and is spanned by : [¢[?® : = : ¢*C" =
In the proof of Theorem 2.2, we may assume without loss of generality that

/ o(C)e < 2dm (¢) = 0,
(®

8 The expression : (°C" : is called the Wick product.
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that is, EZ,, = 0. Then expansion (2.5) starts with a = ag > 1, ¢24, # 0.
Since

20 B(opslueP ) (gslw@pe ) = {peore e =

otherwise

[14, Theorem 3.9] (see also Example at the end of the next subsection), we have

E{o(lwn (s))e(fon (DN} = D Galpnls, ).

a>ap
and
EZ2 = E( / ¢<wn<t>>®<t>du<t>)
@7 - / / E{(jwn (5))) ([wm (1)) }O(5) O (1) dpa(s) dp(t)
=3 & [ 15,20 (5)O () dpa(s)dp(t).
ago // p I

The proof of Theorem 2.2 uses the classical method of moments, though it
cannot be applied directly to the random variables Z, since ¢ (and therefore
Z,) need not have more than two moments. First, w eapproximate ¢ by the
polynomials

em(C) = D0 ZEcICP: m > ao,

a<m

and Z, by the random variables

Zom = /T (102 (0O ) ().

Then the moment method will be applied to Z,, ,,.
Applying formula (2.7) to Z, — Z, ,, (that is, replacing the function ¢ by
© = pm), we get

B(Zn—Zp.m)? Z 3. // pn(s, t)[**O(s) du(s)dp(t)
a>m+1
<1Ol~cry 30 Aasup [ lpas0ldutt)
a>m+1 s€T
2.3) |07~

Ll —soml\p// Pl OP20O(5)O(E)dpu(s)du(2)
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where n(a) denotes the expression on the left-hand side of (2.3). Using again
formula (2.7), we finally get

10117 < (1
E(Zy — Znm)? < T 05 (12, EZ2.
( n n,m) = Céaon(ao) ||<P SOmHL-: n
Hence
lim supIE( — d ) =0,
m00 g, VVaZ, /VaZ,,

and if for each fixed m > ag the random variables Zn’m/\/\m converge in
distribution to A/(0,1) when n — oc, then the random variables Z,/\/V a1Z,
have the same property.

From nov on, we always assume that ¢ is a polynomial (and hence Z,, has
the moments of all orders).

2.3 MORE PRELIMINARIES (THE DIAGRAM FORMULA). The next step is to
evaluate the moments EZ2, p € N, and to compare them with (EZ2)?/? times
the moments of the standard normal distribution.

We have
P P
(23) oz = [ [ B TLetuntt)d } TT 0auter
P j=1 =1
(2:5) Z CZO” : Czal / / { ‘w |2on . } H @
A1,...,0p 00

We compute the integrand E{]"_, : |wy (t;)|** :} using the diagram technique
[14, Chapter 3].

Fix the exponents ai,...,a,. A diagram ~ is a graph with 2(aq + -+ + ;)
vertices labeled by the indices 1,1,2,2,...,p, D (a; vertices are labeled byj and
other a; vertices are labeled hy 7), and each vertex has degree one (i.e., the edges
have no common end points). The edges may connect only the vertices labeled
byi and j with i # j. The set of all such graphs is denoted by T'(ay, ..., a,). For
some choices of ay,...,ap, I'(ag,...,ay) may be the empty set, for example,
T(ar,az) = 0 iff a1 # as, and T'(a, az,a3) = 0 if a; > as + az. The value of
the diagram v equals
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where the product is taken over alledges of 4. In this notation, the diagram
formula [14, Theorem 3.12] reads®

(29) &{ T - bt - b= ¥ e

Jj=1 Ver(alw"wall)
(as usual, summation over the empty set means that the sum has zero value).

2.10 Example: Consider the simplest case p = 2. If ay # ag, then T'(a1, ) =
0, and E{: [w(t1)|** :: |w(t2)]|?*2 :} = 0. Now, suppose a; = as = a. Then we
can glue together the vertices labeled by the same indices. We get a graph with
four v ertices and w o edges of multiplicit ya:

1 2

(2.11)

The edges connecting 1 and 2 contribute the factor p(t;,t2)?, the other a edges
contribute the factor p(ta,t1)® = ma Thus the value of the diagram is
lp(t1,t2)|?%, and E{: |w(ty) 2@ = Jw(tz)|?* :} = 4T(a, a) - |p(t1, t2)[*@. Tt remains
to find the total number of diagrams in I'(a, o).

All the diagrams in I'(a, &) can be obtained from the fixed one by permutation
of a vertices labeled by 1, and by another independent permutation of « vertices
labeled by 2. Therefore, §T'(a, a) = (a!)?, and we recover formmla (2.6).

2.4 THE MAIN ARGUMENT. For p even, there are diagrams with a simple struc-
ture whose total contribution to EZ? equals (EZ2)P/?E&P | where £ ~ N(0,1).
Countribution of the other diagrams is negligible.

2.12 Definition: A diagram -~ is called regular if the set {1,2 ... p} is split
into ¢ = p/2 pairs and there are no edges between the vertices i and j if i and
j belong to different pairs. Otherwise, the diagram is called irregular.

In other w ords,the diagram is regular if after glueing together the vertices
labeled by the same index it becomes a disjoint union of ¢ = p/2 “elementary
diagrams” drawn on (2.11) (having, generally speaking, different multiplicities

9 The diagrams we consider do not contain edges which join the vertices labeled
byi and j (and by ¢ and 5) since E{w(t;)w(t;)} = E{w(t;)w(t;)} = 0.
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of the edges).

e

regular diagram irregular diagram

NNl NN
W w
NN

e L B

== =

Suppose p is even and the diagram ~ is regular. For each j, we glue together
all the vertices labeled by j and j, obtaining a reduced diagram ~*; i.e., a
graph with p vertices and nmultiple edges which is split into ¢ = p/2 connected
components.

F or example, if~y is related to the partition

then the reduced diagram ~* is

261 282 204

=3

where 28; = 2as9x—1 = 2agy is the multiplicity of the edge which connects

the vertices 2k — 1 and 2k. The k-th component of the reduced diagram

7* contributes by the factor |p(tag—1,t2x)|2%*, so that the value of diagram

v is TT0_, |p(tak—1,t21)[?P*.  Integrating this over TP against the measure
1= Ot)du(ty), we get

(2.14) : p(s, )20 (5)O (k)du(s)du(t).
k]:[l// p u(s)du

Now we need tado some counting. Each reduced diagram ~* is defined by
the choice of the partition, like (2.13), and the multiplicities f1, ..., 3, of the
edges. Since the glueing procedure is not one-to-one, each reduced diagram has
a “multiplicit y” (that is, the mmber of regular diagrams which give the same
reduced diagram * after glueing) depending on f,. .., §, which also should be
taken into account.

Notice that if w estarted with a different partition of the set {1,2,...,p}
into disjoirt pairs, then anyway we would finish with the same answer (2.14).
Therefore, we must multiply the expression (2.14) by the number of partitions
of the set {1,2,...,p} into disjoint pairs. The number of such partitions equals
E¢P where £ ~ N(0,1) [14, Remark 1.29].
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Next, let us count the “multiplicit y” of the reduced diagram. If w efix a
regular diagram v, then all other regular diagrams having the same reduced
diagram ~v* can be obtained from 7 by p independent permutations: w ecan
permute «ay vertices labeled by 1, then as vertices labeled by 2 and so on.
Since these permutations are independent, the total multiplicity of the reduced
diagram equals

(2.15) arlag! oyl = (B1)%(B21)? - (B,1)?,

and we need to put this factor before the product (2.14) when we summate over
reduced diagrams; i.e., over all possible choices of the numbers i, ..., 5, > ag.
Combining all pieces, we get

(regular) = Y M(Bl) - (B,!)?E€? (product (2.14))

Bise-sBa>ao (Bi!)? -+ (Bg!)?
- <B§002‘3// p(s. D)6 (5)8(t)d (S)du(t)>q

= (Ber)(B23),

Therefore,
RZ? = (Iﬁlgp)(EZfL)p/2 + (irregular),

and w eneed to show that the contribution of irregular diagrams is negligible
with respect to the main term (EZ2)?/? when n — oc.

Since ¢ is a polynomial, there are only finitely many irregular diagrams which
enter expression (2.8) for EZ? after plugging in the diagram formula (2.9). We
shall show that if the diagram « is irregular, then

(2.16)

/ /T, (t1,ta, . tp)|dp(ty) - - dp(ty) ((Stelg/ [pn (s, 1)]dp )) 2>,

for n — oo. Then due to assumption (2.3) (and expression (2.7) for EZ2)

[t t)ldute) - dutty) = o (B2,

and
(irregular) = o((EZ2)"/?), n — oo,

which finishes the proof of Theorem 1.2 in the case of general radial functions
up to the proof of (2.16).
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Proof of (2.16): First, we make another reduction of the diagram and define a
p-vertex graph with simple edges which couple the vertices ¢ and j if and only
if at least one of the pairs (i, ) or (j,7) was coupled in the original diagrams
(without taking into account the multiplicities of the original coupling). We
denote the reduced diagram by v**. F or example:

1 1 2
1
1
i 3 4
a diagram, v its reduction, y**
Then
(2.17) Vot < T lettit)

(i.j)ee(v**)

where the product is tak enover all edges of v**. We have to estimate from
abo e the integral of |V, | overT?. Replacing |V,| by its upper bound (2.17), we
obtain the integral which factorizes into the product of integrals described hy
connected components of the diagram v**.

Let us start with one m-vertex component of the diagram 4**. The component,
can be a complicated graph anyway, we can always turn this graph into a
tree with m vertices b y deleting some edges (this procedure only increases the
integral we are estimating). Having a tree, we choose a vertex belonging to only
one edge and integrate it out, which giv es the factor (supey [, [pn(s, t)|du(t))
and the rest of the tree which is a new tree with m — 1 vertices. By induction,
an ym-vertex tree describes the integral which does not exceed

(sun /. |pn<s7t)|du<t))w.

Now, suppose the reduced diagram ~** has k connected components and the
i-th component has m; vertices!? Then the right-hand side of (2.17) integrated

over TP does not exceed

(m1—1)+-+(me—1) p—k
<sup / |pn<s,t>du<t>) - (sup / pn<s7t>|du<t>> -
seT JT seTJT

Since the diagram « is irregular, k < p/2 and we get (2.16).

10 Observe that mi + --- + mg = p.
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2.5 THE LAST STEP. It remains to explain why in the case when the function
© is increasing, it suffices to assume that condition (2.3) holds only for a = 1.
In the proof given above, condition (2.3) was used only in the estimate

EZ2
SUD/ pn(8,t)|du(t) < 5———
Sup Tl (s,1)|dp(t) 2. n(a0)

where ap > 1 is the minimal positiv einteger such that ca,, # 0, and n(a) is
the left-hand side of (2.3); i.e., we need condition (2.3) only with a = ag. If the
function ¢ increases, then ag = 1. Indeed, it is easy to find that : [¢|? := [(|*—1.
Then

o= ") = e 2dy = / (o) — (1) = Ve 2dr > 0,
0] 0

concluding the proof of Theorem 1.2.

3. Asymptotic normality for chaotic analytic zero points

3.1 FROM CHAOTIC ANALYTIC ZEROES TO NON-LINEAR FUNCTIONALS OF
GAUSSIAN PROCESSES.  Recall the random objects defined in the Introduction:
the Gaussian analytic functions ¢, (z) (see (0.1), (0.2) and (0.3)), the random
measures ny, counting their zeroes, and the linear statistics Zy,(h). Since

2ndny = Alog|y|dm = A*log |y|dm™
where dm* and A* are the invarian tmeasure and the invariant Laplacian on

M, we have
200) = 3= [ toglun ()4 R’ (2)

obtaining in each of the three cases a family of non-linear functionals of the
complex-valued Gaussian process 17, defined on M. We normalize the process

1) putting
U1 (2)(1 + |2>)~F/2  (elliptic),

Yr(2) 2
== ¢ (z)eLIzI/2 (flat),
VEL(2)| wi(z)(l — 21152 (hyperbolic).

In the flat and hyperbolic cases w euse a large real parameter instead of the

(3.1) wr(z) =

large integer parameter used in Section 2. Note that the (non-Gaussian) random
process log |w(z)] is stationary (that is, its distribution is invariant with respect
to the corresponding group of isometries), though the Gaussian process w(z)
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is not (because of the phase multipliers in (0.4)). In all three cases, w(z) ~
N (0,1) for each 2. We obtain

1 . .
Zi(h) —EZ,(h) = %/ log |wp |A*hdm™.
M

Indeed, the left-hand side has zero expectations since Elog |wr, ()| = const, and
the in varian t Laplacians of the test functions are orthogonal to theonstants.
It remains to check conditions (2.3) (with a = 1) and (2.4) of Theorem 2.2, and
to compute the asymptotics of the variance of the random variables Zp,(h).

3.2 CHECKING CONDITIONS (2.3) AND (2.4). Let

__ EwiC)Bim)
VEDLGOP Bl ()P

pr(z1,22) = B(wr (21)wr (22))

The function of two variables, |pr, (21, 22)|, reduces to a function of one variable,
|pr(2,0)], by G-invariance, |pr, (21, 22)| = |pr(9(21),9(22))|. Explicit formulas
for pr(2,0) = |pr(z,0)| follow from (0.1), (0.2), (0.3) and (3.1); namely

pr(z,0) = (14 |2/%) "/? (elliptic),

1
pr(z,0) = exp(~ 5 LI2[*) (flat),
pr(z,0) = (1 — |2]?)/? (hyperbolic).

A straigh tforward inspection shows that in all three cases the functions
%pL(z, 0) converge weakly to the point mass at the origin:

L—oc 27

lim i/M pr(2,0)0(2)dm* () = ©/(0)

for any continuous test-function © (as usual, with a compact support if M is
non-compact).

By G-invariance, for any § > 0, any con timous test-function © and any
Zo € M,

lim %/ |pL(z1,22)|ﬁ®(z1)dm*(z1) = O(z2)
M

(recall that |p7|® = |psz|). A t last, nultiplying both sides of this equation by

O(22) and integrating by 22, w e get

(32) lim —— lpr(21,22)[7©(21)O (22)dm™ (21)dm” (22) = |[O[72(n+)-
M2

L—oc 27
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Now, conditions (2.3) and (2.4) become evident: for L — oc,

27

wp [ Jpsen i (2) = [ foreo0lam' () ~ -

z2EM

this giv es us (2.4).T o get (2.3), obsere that the double integral in the numer-
ator of (2.3) has the same decay

p2(21. 22)2O(21) O (22)dm* (21 )dm* (z2) ~ - - 101172 (-
M L

3.3 ASYMPTOTICS OF THE VARIANCE. We shall use formula (2.7) for the
variance of Z(h),

. 1 . ) .
BZ3(h) = 15 3 cha //M (21, 20) 22 A B (20 ) A* R(za)dm (21 )dm* (22),
a>1 -

where ¢y, are defined by the expansion

o0

log[¢| = Z CZ(.J (P> s for ¢ ~ Ng(0,1)

a=0

(cf. (2.5)). Denoting
1 5 B
L e
a>1
we reduce (0.6) to relation (3.2) with 8 = 2a:

1 +o(1) 2 T w7112 K+ o(1) w7112
2 Cza'L—a'HA A z2(mey = = - [[AR[|L2(msy.-

2 _
EZ} (h) = N

a>1
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